

for ARM®

Migration Guide

IAR Embedded Workbench®

to Atollic TrueSTUDIO®

Document Data

ii | P a g e

COPYRIGHT
© Copyright 2009-2016 Atollic AB. All rights reserved. No part of this document may be reproduced
or distributed without prior written consent of Atollic AB. The software product described in this
document is furnished under a license and may only be used, or copied, according to the license
terms.

TRADEMARKS

Atollic, Atollic TrueSTUDIO and Atollic TrueSTORE and the Atollic logotype are trademarks or
registered trademarks owned by Atollic. ARM, ARM7, ARM9 and Cortex are trademarks, or
registered trademarks, of ARM Limited. ECLIPSE is a registered trademark of the Eclipse foundation.
Microsoft, Windows, Word, Excel and PowerPoint are registered trademarks of Microsoft
Corporation. Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated. All other
product names are trademarks, or registered trademarks, of their respective owners.

DISCLAIMER

The information in this document is subject to change without notice and does not represent a
commitment of Atollic AB. The information contained in this document is assumed to be accurate,
but Atollic assumes no responsibility for any errors or omissions. In no event shall Atollic AB, its
employees, its contractors, or the authors of this document be liable for any type of damage, losses,
costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

DOCUMENT IDENTIFICATION

TS-MG-ARM-IAR October 2016 ς Rewrite of TS-IAMG of January 2011

REVISION

1st October 2016 ς Applies to Atollic TrueSTUDIO® v7.0.0

Atollic AB
Science Park
Gjuterigatan 7
SE- 553 18 Jönköping
Sweden

+46 (0) 36 19 60 50

Email: sales@atollic.com
Web: www.atollic.com

Atollic Inc.
241 Boston Post Rd. West (1st Floor)
Marlborough,
Massachusetts 01752
United States

+1 (973) 784 0047 (Voice)
+1 (877) 218 9117 (Toll Free)

Email: sales.usa@atollic.com
Web: www.atollic.com

mailto:sales@atollic.com
http://www.atollic.com/
mailto:sales.usa@atollic.com
http://www.atollic.com/

Table of Contents

iii | P a g e

Contents
About this Document ... 9

Intended Readers .. 9

Document Conventions ... 10

 Migration Decisions ... 11

Why migrate? ... 12

When to Migrate? .. 13

What to migrate and the implications of migration?............................... 14

Project and build control ... 14

Infrastructure and work-flow .. 14

Application source and firmware .. 14

Third party O/S and libraries ... 15

Re-validation ... 15

How can migration be made easier? .. 17

Automated Project creation .. 17

CMSIS - Cortex® Microcontroller Software Interface Standard 17

Migration of Legacy Firmware .. 18

ABI Compliance ... 18

 Starting the Migration with Atollic TrueSTUDIO® . 20

Before you start .. 21

Workspaces & projects ... 21

Creating a new project ... 23

Configuring the project .. 27

Building the project .. 30

Build, Rebuild all .. 31

Importing Source Files .. 32

Using files in an external location ... 37

Using directories in an external location .. 38

Table of Contents

iv | P a g e

Using IAR Eclipse plugin .. 41

 Migrating Source Files ... 51

C/C++ Source changes .. 52

The Pre-processor ... 52

Language extensions ... 54

Inline assembler ... 55

Inline functions .. 55

RAM based functions ... 56

Interrupt and exception functions ... 56

Nested interrupt functions .. 57

Non-returning functions .. 57

ARM® specific functions... 58

Weak functions/data ... 58

Root functions and unreferenced data .. 58

Packed Data ... 59

Alignment of data .. 59

Endian setting of data .. 59

Non-initialised data .. 60

Location control of data ... 60

Built-in functions ... 63

Assembler source changes ... 65

Startup code ... 67

 Detailed Project Build Control 69

Migrating Build files .. 70

Compiler setup and control .. 71

Optimization .. 71

Implementation Specific Options .. 72

Link management ... 77

Table of Contents

v | P a g e

Linker Script/Command Files .. 77

Library management .. 84

Standard Libraries ... 84

Library Creation and Management ... 86

Migrating 3rd Party files ... 88

Vendor supplied ports ... 88

Source level porting .. 88

Binary level porting ... 88

Creating a binary interface .. 89

Function call/return ... 90

Use the compiler to create an interface for you 90

List of Figures

vi | P a g e

Figures
Figure 1 - Workspaces and projects ... 22

Figure 2 - Starting the project wizard .. 24

Figure 3 - C Project ... 24

Figure 4 - Hardware configuration ... 25

Figure 5 - Debugger configuration .. 26

Figure 6 - Open C/C++ Build settings ... 27

Figure 7 - C/C++ Target settings ... 28

Figure 8 - C/C++ Tool settings .. 29

Figure 9 - Adding C/C++ pre-defined symbol ... 29

Figure 10 - Workspace Build Preferences .. 30

Figure 11 - C/C++ Build Console View .. 31

Figure 12 - Project Explorer .. 32

Figure 13 - Deleting project files .. 34

Figure 14 - Project Explorer view ... 35

Figure 15 - Adding files, step 1 ... 35

Figure 16 - Adding files, step 2 ... 35

Figure 17 - Adding files, step 3 ... 36

Figure 18 - Linking to files .. 37

Figure 19 - Linking to directories, step 1 .. 38

Figure 20 - Linking to directories, step 2 .. 38

Figure 21 - Linking to directories, step 3 .. 39

Figure 22 - Project Explorer, final ... 40

Figure 23 - Import EWARM Eclipse project, step 1 41

Figure 24 - Import EWARM Eclipse project, step 2 42

Figure 25 - Import EWARM Eclipse project, step 3 42

Figure 26 ς Delete multiple folders and files ... 43

Figure 27 ς Drag-and-drop folders in TrueSTUDIO® 44

Figure 28 ς Importing files to a project, step 1 .. 45

Figure 29 ς Importing files to a project, step 2 .. 45

Figure 30 ς Importing files to a project, step 3 .. 46

Figure 31 ς Importing files to a project, step 4 .. 47

Figure 32 - C/C++ Include Path setting (start) .. 48

Figure 33 - C/C++ Include Path setting (end) ... 50

Figure 34 - Linker script, adding .ramfunc ... 56

file:///C:/Users/ASW-HG-Admin/Documents/Business/TrueSTUDIO/MatsP/IAR%20Migration%20Guide/IAR_2_Atollic_TrueSTUDIO_MigrationGuide_ARM_20161005-1.docx%23_Toc463423239

List of Figures

vii | P a g e

Figure 35 - C/C++ remove <intrinsics.h> .. 61

Figure 36 - C/C++ enable/disable IRQ .. 61

Figure 37 - C/C++ Adding TIM1_UP_IRQHandler ... 62

Figure 38 - C/C++ finding start, end and size of sections 63

Figure 39 - Linker finding start, end and size of sections 64

Figure 40 - EWARM linker script file .. 80

Figure 41 - Linker script, defining symbols ... 80

Figure 42 - Linker script, defining memory and regions 81

Figure 43 - Linker script, adding stack and heap .. 81

Figure 44 - Linker script, initialized data .. 82

Figure 45 - Linker script, modifying memory regions 83

Figure 46 - Linker script, removing section placements 83

Figure 47 - Linker script, place sections in regions 83

List of Tables

viii | P a g e

Tables
Table 1 ς Typographic Conventions ... 10

Table 2 - Files to keep, copy or link to .. 33

Table 3 - Matching example project include paths 49

Table 4 - IAR Embedded Workbench® Specific Predefined Symbols 53

Table 5 - Cross-assembler differences ... 66

Table 6 - Startup Code symbols.. 68

Table 7 - Compiler option cross-reference .. 76

Table 8 - Standard Libraries ... 86

Introduction

9 | P a g e

ABOUT THIS DOCUMENT
Welcome to the Atollic TrueSTUDIO® Migration Guide. The purpose of this document is to
help you to migrate an IAR Embedded Workbench® project to Atollic TrueSTUDIO®.

INTENDED READERS
This document is primarily intended for embedded systems developers and project
managers who want to understand the process of migrating a project (existing or new)
from using the IAR Embedded Workbench® C/C++ compiler to Atollic TrueSTUDIO® for the
ARM® processors.

Introduction

10 | P a g e

DOCUMENT CONVENTIONS
The text in this document is formatted to ease understanding and provide clear and
structured information on the topics covered. The following typographic conventions
apply:

Table 1 ς Typographic Conventions

 Style Use

Command Keyboard Command or Source Code Section.

Object Name Name of a User Interface Object (Menu, Menu Command,
Button, Dialog Box, etc.) that appears on the computer
screen.

Cross Reference Cross reference within the document, or to an external
document.

Product Name Name of Atollic product.

Identifies instructions specific to the Graphical User
Interface (GUI).

Identifies instructions specific to the Command Line
Interface (CLI).

Identifies Help Tips and Hints.

Identifies a Caution.

 Migration Decisions

11 | P a g e

 MIGRATION DECISIONS
This document has been created to enable development teams to understand the need for,
the mechanisms, and the implications of migrating from one development toolchain to
another for a given processor or processor family.

The example used throughout the process is for migration from the IAR Systems®
development toolchain to the Atollic TrueSTUDIO® IDE for ARM® processors. However the
principles will remain constant across processor families and development tool vendors.

The reader should refer to the GNU C/C++ compiler documentation available with Atollic
TrueSTUDIO® for detailed documentation on the usage and extensions supported by the
compiler toolchain.

In addition, the Application Binary Interface (ABI) document is available directly from ARM
Ltd. at the following location: www.arm.com. Finally, the user should cross-reference this
information with that provided by their current compiler vendor (IAR Systems® in this
example).

This section covers the high-level questions which need to be addressed before embarking
on a project migration:

¶ Why migrate?

¶ When to migrate?

¶ What to migrate and the implications of migration?

¶ How can migration be made easier?

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html

Migration Decisions

12 | P a g e

WHY MIGRATE?
Migration to a new development toolchain has to be driven by need; the need for better
performance (of the embedded code), the need for standards compliance, the need for a
better development workflow using higher functionality and more integrated
development environments and/or the need for a better support model from the tools
vendor.

The choice may be largely driven by engineering or commercial concerns, but ideally
should provide benefits in both areas. As an example, the benefits of the Atollic
TrueSTUDIO® IDE over its competitors could be summarized as:

¶ Cost: The Atollic TrueSTUDIO® product is partly based on open-source
components that have been extended to match and surpass the feature-set in
most other commercial offerings. By reusing some open-source components, the
product can be offered at a substantially lower price than many other vendors.

¶ Performance: The GNU C/C++ compiler provides a world class compiler
development toolchain, enhanced and maintained by thousands of developers
and many companies worldwide. In recent years, it has become the de-facto
standard toolchain for compiler research, further enhancing its capabilities in
terms of optimization and processor support.

¶ Standards: The GNU C/C++ compiler supports C and C++ development with full
support for both languages along with runtime libraries for both 'bare-metal'
(where the runtime system runs directly on the processor) or Linux user-mode
(where the runtime system interacts with the Linux kernel via system calls).

¶ Workflow: The Atollic TrueSTUDIO® IDE provides a modern and highly integrated
development environment which directly supports the use of advanced workflow
tools such as version control, bug tracking, code review, code analysis and
distributed task-based development, along with tailored control for project and
build control and a fully integrated debugger.

¶ Support Model: The Atollic TrueSTUDIO® IDE comes in a variety of packages
enabling customers to select the features/price model best suited to their
development needs. As the underlying compiler toolchain is based on the GNU
C/C++ compiler, there is no worry about a 'proprietary' toolchain becoming out of
date, or unavailable. The same goes for the Atollic TrueSTUDIO® IDE, as it is
based on the open Eclipse framework.

Migration Decisions

13 | P a g e

WHEN TO MIGRATE?
Once the decision has been made to migrate to a new toolchain, the migration has to be
planned according to the needs of the organization. Typically there are three scenarios for
migration:

¶ At the start of a new project

¶ Parallel to a running project

¶ In a failing project to bring it back on line

Perhaps the simplest time to perform migration is at the start of a new project as the
effort can be factored into the project plan, with resources and time being allocated
before the project has started.

However, provided that the effort can be reasonably assessed, and the benefit from
migrating can be measured (in performance, development time, cost or other terms),
there is no reason why migration can't happen while a project is in progress.

Either resources can be allocated to do migration setup tasks while the rest of the team
gets on with other areas of development, or the whole team can focus on the migration to
enable a rapid transition.

Where companies are using version control systems, it makes sense to 'branch' the
existing project to allow for migration changes to be contained in one development flow,
allowing any other code changes on the original code base to be merged in as required
later. In fact, as the Atollic TrueSTUDIO® IDE fully supports version control system
integration, it facilitates this mode of operation.

Migration Decisions

14 | P a g e

WHAT TO MIGRATE AND THE IMPLICATIONS

OF MIGRATION?
The Atollic TrueSTUDIO® IDE provides a wealth of facilities on top of the basic necessities
such as the compiler toolchain, debugger and editor. It is entirely possible to phase the
migration, taking advantage of certain features of the IDE when appropriate. The key
areas to consider are described below.

The remainder of the document will examine some of the main issues raised.

PROJECT AND BUILD CONTROL
The Atollic TrueSTUDIO® IDE provides the ability to auto-generate projects for the
supported embedded processors. These auto-generated projects provide a framework in
terms of describing the source files and libraries that make up the project, and also
provide a way to generate the scripts to automate the build process.

INFRASTRUCTURE AND WORK-FLOW
The Atollic TrueSTUDIO® IDE provides a complete project and build infrastructure for the
GNU compiler toolchain, to include GUI level support for configuring target (processor)
specific options.

It will auto-generate build scripts and linker command files which may be controlled
entirely through the GUI, or edited by the user. This is however not mandatory, and so
customers migrating legacy projects which have make files already may wish to continue
to use them.

The IDE provides a mechanism to switch to make file use, and even provides a make file
editor. Similarly, if version control and/or bug tracking systems are being used as
independent applications, there is no requirement to switch to using them via the IDE.
Use of such tools integrated within the IDE can be phased into the project as required.

APPLICATION SOURCE AND FIRMWARE
The majority of application code is usually written in a high level language (C or C++), in
fact using common compiler extensions such as support for interrupt service routines in C,
and it is possible to write nearly all of an application without using assembler.

Migration Decisions

15 | P a g e

Even assembler modules can be converted relatively simply as most cross-assemblers
support similar functionality, differing only slightly in syntax (for example the way that
some addressing modes are indicated, or that macros and other high level features are
implemented), a simple search and replace or perhaps writing a file to map one symbol to
another may suffice.

THIRD PARTY O/S AND LIBRARIES
Ideally, it should be possible to get a ported and supported version of your third party OS
and/or library for the new GNU compiler toolchain. Make files and build control can then
relatively simply be setup in the IDE.

Alternatively, some vendors sell source licenses, with the OS/library being provided in a
portable high level language. In that case, the work is similar to that which was already
undertaken when originally buying the license ς i.e. configuration, build and test. The final
possibility is that the OS/library is only available in a binary form, and no port for the GNU
compiler toolchain is available.

It is still feasible to use a binary library as you are not changing the underlying processor
being used, and for ARM® architectures there is a 'standard' Application Binary Interface
(ABI) defined by ARM® which most compilers targeting ARM® processors implement.

You may be fortunate and discover that the libraries you wish to link into your new ported
application will link and work without issue, however careful checking of how the two
compiler implementations differ in their ABI compliance may be required. In the case of
there being some difference, it is entirely possible to write an ABI compliance wrapper (in
assembler) which ensures that the transition from GNU functions to legacy code works
correctly.

RE-VALIDATION
One of the major tasks of migration is re-validation. This is of course required, regardless
of whether any code changes have been performed or not. The act of moving from one
compiler to another will mean that slightly different code will be generated, as no two
compilers (or even versions of a single compiler) will generate the same code, as each will
optimize in a different way.

It should be remembered that those pre-compiled binaries may have
dependencies on 'standard' libraries such as the standard C library, and on
compiler specific libraries such as intrinsic functions which are implicitly
referenced according to the code.

Replacing the standard libraries with those provided by the GNU toolchain
should present no problem, but the nature of the intrinsic libraries may mean
that you have to include them in your final binary in order to make it work.

Migration Decisions

16 | P a g e

For new projects, the efforts of constructing new tests should not be any greater than with
the legacy tools, for existing projects, the testing infrastructure may also require porting
(depending on your application and system), which will need to be factored into the
overall migration plan.

Migration Decisions

17 | P a g e

HOW CAN MIGRATION BE MADE EASIER?
Firstly, the assumption in this document is that the migration does not entail switching
processor architectures, and most probably that it is based on the same chip vendor and
product family.

In this case there is no additional learning curve regarding the processor, the peripherals
and interfaces ς i.e. the system design problem has already been solved. In such a case
the task is reduced to migration of project and build control, application source files and
firmware.

AUTOMATED PROJECT CREATION
The Atollic TrueSTUDIO® IDE supports automated, wizard-based project generation, which
allows rapid creation of the project and build level control required for any project.

Part of the project generation allows the user to select the device being used (i.e. vendor
and chip family), and will then auto-generate firmware code compliant to the
processor/chip vendor's firmware library to support the device.

CMSIS - CORTEX® MICROCONTROLLER SOFTWARE

INTERFACE STANDARD
A standard firmware library infrastructure has been created by ARM Ltd. along with
semiconductor and toolchain vendors. The Cortex® Microcontroller Software Interface
Standard (CMSIS) defines a hardware abstraction layer which is available as a firmware
library coded to support compilation by a number of compilers, including the GNU C/C++
compiler and the IAR Embedded Workbench® C/C++ compiler. Details can be found on the
ARM® website www.arm.com.

The firmware generated by the Atollic TrueSTUDIO® IDE for the ARM® Cortex® series of
processors includes all low-level device control via the CMSIS firmware library (including
startup, interrupt and exception handlers) along with chip vendor supplied peripheral
device drivers.

As the firmware library complies to a standard, and has been written to support both the
GNU and IAR Embedded Workbench® compilers (by using conditional compilation), users

It is recommended to use the Atollic TrueSTUDIO® project generation code,
whether a fully integrated build, or a makefile based build is being used, as it
greatly simplifies the creation of a new project and can be used as a
framework to compare to existing projects and to paste legacy files into
where needed.

http://www.arm.com/

Migration Decisions

18 | P a g e

should find that they have a familiar Application Programming Interface (API) to code
against, which reduces the porting exercise to one of tuning the build control and porting
application source files.

MIGRATION OF LEGACY FIRMWARE
Even when the legacy project has not made use of the chip vendor's firmware library, the
developer still has options on how to proceed:

1. The legacy firmware can be ported to the GNU C/C++ compiler (if a port is not
already available).

2. For ARM® Cortex® processors, the legacy firmware library can be replaced within
the migration project, by the CMSIS firmware library, providing a high quality and
portable hardware abstraction layer which is supported and easily portable.

The initial investment in firmware porting may be significant, as firmware is by its nature
at the closest level to the underlying hardware. This implies that compiler extensions have
been used to directly interact with the underlying processor and peripherals to generate
special functions (interrupts), control placement of data and code, control processor mode
and initialization (using intrinsic functions) and control memory mapped hardware devices.

ABI COMPLIANCE
The Application Binary Interface (ABI) defines implementation specific details of how a
given toolchain supports a processor family. The ABI is usually owned and maintained by
the processor vendor or on their behalf by a nominated third party.

ARM Ltd. provide and maintain a series of ABI documents which cover all aspects required
for building code for the ARM® architectures on various platforms (bare-metal, Linux and
mobile based). The ABI documentation set can be downloaded from the ARM® website at
www.arm.com.

This document describes migration issues related to bare-metal applications, and
therefore only requires an understanding of a subset of the ABI documentation.

Where it is not feasible to use the CMSIS firmware library, it may be prudent
to review the code to understand how the various hardware and compiler
specific control is achieved.

http://www.arm.com/

Migration Decisions

19 | P a g e

The ABI is therefore important at two levels:

¶ Assembler to C/C++ interface level (procedure call, return and stack frame
definition)

¶ Object code format and manipulation

The IAR Embedded Workbench® and GNU toolchains both support the Procedure Call
Standard for the ARM® architecture (AAPCS), which means that users can assume that
functions written in assembler for IAR Embedded Workbench® based projects can be
simply migrated to GNU based projects.

At the source level no changes will be required to change the calling/return mechanism.
However changes may be required to conform to the instruction syntax defined by the
GNU cross-assembler.

Alternatively, ABI compliance means that assembler source files which have been cross-
assembled into relocatable object files using the IAR Embedded Workbench® toolchain
(but not yet linked), may be linked with files built with the GCC toolchain successfully. This
is because both toolchains support the same object file formats and relocation types.

Knowledge of the ABI is not required if migration at a C/C++ source level only
is to be performed. The ABI defines the low-level information required for
writing assembler functions which are callable from C/C++, and required by
toolchain developers to enable interoperability between toolchains.

 Migrating Source Files

20 | P a g e

 STARTING THE

MIGRATION WITH ATOLLIC

TRUESTUDIO®
The simplest way to start your migration project is to use the Atollic TrueSTUDIO® to
generate a complete skeleton project for you, including all required build control files (linker
scripts and make files if required).

Once this has been created, the existing source files can be added into the project, and the
build control files adjusted as necessary.

This section describes the process of creating a skeleton project, importing source files, and
performing simple project configuration and build.

¶ Before you start

¶ Creating a new project

¶ Configuring the project

¶ Building the project

¶ Importing source files

Starting the Migration

21 | P a g e

BEFORE YOU START
Atollic TrueSTUDIO® ƛǎ ōǳƛƭǘ ǳǎƛƴƎ ǘƘŜ 9/[Lt{9ϰ ŦǊŀƳŜǿƻǊƪΣ ŀƴŘ thus inherits some
characteristics that may be unfamiliar to new users. The following sections outline
ƛƳǇƻǊǘŀƴǘ ƛƴŦƻǊƳŀǘƛƻƴ ǘƻ ǳǎŜǊǎ ǿƛǘƘƻǳǘ ǇǊŜǾƛƻǳǎ ŜȄǇŜǊƛŜƴŎŜ ǿƛǘƘ 9/[Lt{9ϰΦ

WORKSPACES & PROJECTS
As Atollic TrueSTUDIO® ƛǎ ōǳƛƭǘ ǳǎƛƴƎ ǘƘŜ 9/[Lt{9ϰ ŦǊŀƳŜǿƻǊƪΣ ƛǘ ƛƴƘŜǊƛǘǎ ƛǘǎ ǇǊƻƧŜŎǘ ŀƴŘ
workspace model. The basic concept is outlined here:

¶ A workspace contains projects. Technically, a workspace is a directory containing
project directories.

¶ A project contains files. Technically, a project is a directory containing files (that
may be organized in sub-directories).

¶ Project directories cannot be located outside a workspace directory, and project
files can generally not be located outside its project directory. Projects can
contain files that are located outside the project directory using links to files and
directories located anywhere.

¶ There can be many workspaces on your computer at various locations in the file
system, and every workspace can contain many projects.

¶ Only one workspace can be active at the same time, but you can switch to
another workspace at any time.

¶ You can access all projects in the active workspace at the same time, but you
cannot access projects that are located in a different workspace.

¶ Switching workspace is a very quick way of shifting work from one set of projects
to another set of projects.

In practice, this creates a very structured hierarchy of workspaces with projects that
contains files.

Starting the Migration

22 | P a g e

Atollic TrueSTUDIO®

Workspace 1
(C:\Joe\Workspace)

Project A

Project B

. . .

Workspace 2
(C:\Customer1)

Project C

Project D

. . .

Workspace 3
(X:\NewProjects)

Project E

Project F

. . .

Currently inactive

workspace

Currently active

workspace

Currently inactive

workspace

Figure 1 - Workspaces and projects

Starting the Migration

23 | P a g e

CREATING A NEW PROJECT
Atollic TrueSTUDIO® supports both managed and unmanaged projects. Managed projects
are completely handled by the IDE and can be configured using GUI settings, whereas
unmanaged projects require a makefile that has to be maintained manually.

We will be using one and the same example project from IAR throughout this migration
guide and we will at the end have a working copy of that project migrated into
TrueSTUDIO®. The example we will be using is the IAR_STM32_SK GettingStarted project
that comes with EWARM. This project is using a Cortex-M3 device family from
STMicroelectronics, the STM32F103xB and we will for this exercise be using the
STM32F103VB device.

Migrating a project from one tool to another can be done in many different ways. The way
we will do this migration is just a suggestion but one that has been used many times and
usually works well. The different steps we will take during the migration are as follows.

a) Create a C project that uses the same core/device as the original project we are
migrating from

b) Configure our new project to match project setting of the original project

c) Import the source files and libraries from the original project

d) Set compiler (and if needed assembler) include file directories

e) Modify part of the source code to make it GCC compatible

f) Modify the linker script file in order to correctly locate the application in memory

As we go along the migration process we will also give you tips and ideas in general
regarding migrating from one tool to another. Things that will be helpful when you migrate
a more complex project than the example we use here and that is meant to give you an
idea of the steps involved when doing a migration.

¢ƻ ŎǊŜŀǘŜ ŀ ƴŜǿ ƳŀƴŀƎŜŘ ƳƻŘŜ / ǇǊƻƧŜŎǘΣ ǇŜǊŦƻǊƳ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǎǘŜǇǎΥ

1. CƛǊǎǘΣ ƳŀƪŜ ǎǳǊŜ ȅƻǳ ƪƴƻǿ ǿƘŀǘ ŘŜǾƛŎŜ ǘƘŜ ƻǊƛƎƛƴŀƭ ǇǊƻƧŜŎǘ ǿŀǎ ǳǎƛƴƎΦ !ǎ ŦƻǊ ǳǎΣ
ǿŜ ǿƛƭƭ ōŜ ǳǎƛƴƎ {¢aƛŎǊƻŜƭŜŎǘǊƻƴƛŎǎ {¢aонCмло±.Φ

Starting the Migration

24 | P a g e

3. {ǘŀǊǘ ǘƘŜ / tǊƻƧŜŎǘ ²ƛȊŀǊŘ ƛƴ ¢ǊǳŜ{¢¦5LhϯΦ /ƭƛŎƪ ǘƘŜ ƛŎƻƴ ŀǎ ǎƘƻǿƴ ƘƛƎƘƭƛƎƘǘŜŘ
ǿƛǘƘ ŀ ǊŜŘ ǎǉǳŀǊŜ ōŜƭƻǿΦ

CƛƎǳǊŜ н - {ǘŀǊǘƛƴƎ ǘƘŜ ǇǊƻƧŜŎǘ ǿƛȊŀǊŘ

4. bŀƳŜ ȅƻǳǊ ǇǊƻƧŜŎǘΣ ǎŜƭŜŎǘ ά9ƳōŜŘŘŜŘ / tǊƻƧŜŎǘέ ŀǎ ǇǊƻƧŜŎǘ ǘȅǇŜ ŀƴŘ ά!ǘƻƭƭƛŎ !wa
¢ƻƻƭǎέ ŀǎ ¢ƻƻƭŎƘŀƛƴΦ /ƭƛŎƪ bŜȄǘ ǘƻ ƎŜǘ ǘƻ ǘƘŜ ƴŜȄǘ ǎǘŜǇ ƛƴ ǘƘŜ tǊƻƧŜŎǘ ²ƛȊŀǊŘΦ

CƛƎǳǊŜ о - / tǊƻƧŜŎǘ

Starting the Migration

25 | P a g e

5. {ŜƭŜŎǘ ±ŜƴŘƻǊΣ aƛŎǊƻŎƻƴǘǊƻƭƭŜǊ CŀƳƛƭȅΣ aƛŎǊƻŎƻƴǘǊƻƭƭŜǊ ŀƴŘ ŎƭƛŎƪ bŜȄǘΦ

Figure 4 - Hardware configuration

6. The next page is the Software Configuration and we will accept the defaults and

click Next.

Starting the Migration

26 | P a g e

7. After this we get to the Debugger Configuration page. Here we select one of

the listed debug solutions, depending on what debug solution we have. For

our example we will select SEGGER J-LINK.

Figure 5 - Debugger configuration

8. The last step is creating two build configurations, Debug and a Release. We

accept this since we easily can add, remove or modify these build

configurations later if needed.

At this point we have a simple project for a STM32F103VB device. Next we need to make

sure that the most important build options are set correctly. It is helpful to have the

original IAR project open when we do this, just so that we can compare build configuration

settings for our two projects.

Starting the Migration

27 | P a g e

CONFIGURING THE PROJECT
Managed mode projects can be configured using dialog boxes (unmanaged mode projects

require a manually maintained makefile). To configure a managed mode project, perform

the following steps:

1. First select myProject in TrueSTUDIO® Project Explorer, and after that you click the

ά/κ/ҌҌ .ǳƛƭŘ ǎŜǘǘƛƴƎǎ ŦƻǊ ǇǊƻƧŜŎǘ ΨƳȅtǊƻƧŜŎǘΩέ ōǳǘǘƻƴ in the Toolbar.

(It is important to make sure the top of the project is selected when configuring the

entire project. It you would have a folder or file selected, then the configuration

changes would only apply to that file or files in that folder.)

Figure 6 - Open C/C++ Build settings

Starting the Migration

28 | P a g e

2. ¢ƘŜ ǇǊƻƧŜŎǘ tǊƻǇŜǊǘƛŜǎ ŘƛŀƭƻƎ ōƻȄ ƛǎ ŘƛǎǇƭŀȅŜŘ ŀƴŘ ōȅ ŘŜŦŀǳƭǘ ǘƘŜ ά¢ŀǊƎŜǘ {ŜǘǘƛƴƎǎέ ǘŀō

is selected. Here you can view and modify the target selected if needed but we set this

up during project creation so we will leave it as is. Note that project settings relevant

for both managed mode projects and unmanaged mode projects are collected under

the Target Settings tab.

Figure 7 - C/C++ Target settings

3. {ŜƭŜŎǘ ǘƘŜ ά¢ƻƻƭ {ŜǘǘƛƴƎǎέ ǘŀō ǘƻ ŘƛǎǇƭŀȅ ƻǇǘƛƻƴǎ ŦƻǊ ƻǳǊ ōǳƛƭŘ ǘƻƻƭǎΦ ²Ŝ ǿƛƭƭ ƘŀǾŜ ŀ ƭƻƻƪ

at some of the options here and compare them to how our original IAR project

options were set. Let us first have a look at the selected C standard. From the IAR tool

we see that they use C99 as default so we change our C language from gnu11 to

άƎƴǳфф όŎфф Ҍ Ǝƴǳ ŜȄǘŜƴǎƛƻƴǎύέΦ

Starting the Migration

29 | P a g e

Figure 8 - C/C++ Tool settings

4. Second we will have a look at the preprocessor defines set for the compiler. The

original project have EMB_FLASH , STM32F10X_MD and USE_STDPERIPH_DRIVER

ŘŜŦƛƴŜŘΦ {ƻ ǿŜ ŀǊŜ ƳƛǎǎƛƴƎ 9a.ψC[!{I ŀƴŘ ǘƻ ŀŘŘ ǘƘƛǎ ǎȅƳōƻƭΣ ŎƭƛŎƪ ά!ŘŘΧέ ōǳǘǘƻƴ

 and type in EMB_FLASH into the Enter Value dialog that pops up. When done,

click OK to commit to this new preprocessor define.

Figure 9 - Adding C/C++ pre-defined symbol

5. We are done for now configuring our build tools so we click OK to commit to the

changes made and get out of the project Properties dialog.

Take some time to look around in the Tool Settings for TrueSTUDIO® to familiarize yourself

with the different options here. Advanced users may want to enter command line options

manually, and this can be done in the Miscellaneous panel for any tool. When done

exploring the Tool Settings, click OK to accept the new settings.

In the C compiler -> Directories we have a list of include paths that the
compiler will use when search for include files. These include paths differs
from what you will see in the IAR tool, but this is ok for now. Once we have
decided which files to add and how to add them, then we can update the list
for compiler include paths and all this will be done later in this guide.

Starting the Migration

30 | P a g e

BUILDING THE PROJECT
By default, Atollic TrueSTUDIO® builds the project automatically whenever any file in the

ōǳƛƭŘ ŘŜǇŜƴŘŜƴŎȅ ƛǎ ǳǇŘŀǘŜŘΦ ¢Ƙƛǎ ŦŜŀǘǳǊŜ Ŏŀƴ ōŜ ǘƻƎƎƭŜŘ ǿƛǘƘ ǘƘŜ ά.ǳƛƭŘ ŀǳǘƻƳŀǘƛŎŀƭƭȅέ

option. You find this option if you select the Preferences entry in TrueSTUDIO® Windows

menu. In the Preferences dialog you select General and Workspace.

Figure 10 - Workspace Build Preferences

Starting the Migration

31 | P a g e

BUILD, REBUILD ALL
You have easy access to the different build commands from the Toolbar. You can do a

Build, which would only build files that was changed since the last build. Or you can do a

Clean which, would mark all source files in your project as in need of a build. A Rebuild will

simply rebuild all your files, similar to doing a Clean followed by a Build.

Now we do a Rebuild to ensure that we have a project that builds without warnings and

errors. In our TrueSTUDIO® IDE you have a Window at the bottom that has multiple views.

One is the Report view and should not have reported any errors or warnings. If you select

the Console view you can see the command line options for each build step together with

the output from our build tools.

Figure 11 - C/C++ Build Console View

There are by default five build buttons in the Toolbar
and if you hover over them with the mouse you will get a tooltip on what they
do.

Starting the Migration

32 | P a g e

IMPORTING SOURCE FILES
Importing source files from the old IDE into Atollic TrueSTUDIO® is generally very simple. It

is only a matter of copying the files into the Atollic TrueSTUDIO® project source directory.

This can be done in Windows Explorer or from within the Atollic TrueSTUDIO® IDE.

If you have a large amount of source files in the project that you are migrating to Atollic

TrueSTUDIO® then it might be worth considering using the IAR Eclipse plugin for ARM.

With that plugin installed in Atollic TrueSTUDIO® you will have access to all source files for

both the original EWARM project and the new Atollic TrueSTUDIO® project in the same

Workspace. If this is the way you like to migrate your project, then go ahead and jump

ŦƻǊǿŀǊŘ ǘƻ ǎŜŎǘƛƻƴ ά¦ǎƛƴƎ L!w 9ŎƭƛǇǎŜ ǇƭǳƎƛƴέ ōŜƭƻǿΦ

If you want to include specific source code files (or entire directories containing many

source code files) that you wish to keep in an external location (i.e. in a location other than

in the project directory tree), this can be facilitated with links to the external file or

directory.

Using Project Explorer, we can have a look at the file and folder structure for our new

TrueSTUDIO® project.

Figure 12 - Project Explorer

hǳǊ ǇǊƻƧŜŎǘ άƳȅtǊƻƧŜŎǘέ ǿŜ ƘŀǾŜ ŦƛǾŜ ŦƻƭŘŜǊǎΦ .ƛƴŀǊƛŜǎΣ LƴŎƭǳŘŜǎ ŀƴŘ 5ŜōǳƎ ŀǊŜ ƎŜƴŜǊŀǘŜŘ

for us and we can safely ignore them for now. Our source folders are Libraries and src.

(The C in the folder map icon indicates that this is a source folder.)

Starting the Migration

33 | P a g e

So we can see that we have two different libraries, CMSIS and

STM32F10x_StdPeriph_Driver. Going back to our original IAR project we see that these

libraries are included in that project as well. So for these libraries we have two options.

Either we use the new library that came with TrueSTUDIO®, and in that case we can just

leave them unmodified. Or we can use the libraries we have in our original IAR project. In

that case we can either copy them over to our TrueSTUDIO® project or we can link to their

current IAR project location. (A rule of thumb here would be that if you will modify files,

then copy them to your TrueSTUDIO® project location since modifications you make might

corrupt the original project.) Since we do not expect to modify CMSIS or STM32F10x

peripheral libraries we decide to link to the original library files from TrueSTUDIO®.

A closer look at the CMSIS library folder shows that the this folder in the original IAR

project contains two files, startup_stm32f10x_md.s and system_stm32f10x.c. Both these

files are located in the src folder for our new TrueSTUDIO® project. And the CMSIS Library

folder in TrueSTUDIO® contains only header files. So if we reorganize our IAR project to

TrueSTUDIO® format we really do not need the CMSIS library folder since it does not

contain any C source files, only header files. We just need to make sure to point the

compiler to the correct folders when the preprocessor searches for include files and we

will do that in just a moment.

Next we have the src folder that contains our main application (in main.c) and some other

system files. For each of these files we need to decide if we should keep it, replace it, or

simply remove it. In the table below we have listed all files and added a not one how we

will handle that file for our migration process.

CƛƭŜ /ƻƴǘŜƴǘ 5ŜŎƛǎƛƻƴ

startup_stm32f10x_md.s Startup code for our device We will keep the TrueSTUDIO® startup file. If we had
a __low_level_init function defined in IAR them we
would move that code in to TrueSTUDIO®.

stm32f10x_conf.h Configuration setup for
STM32F10x_StdPeriph_Driver
library

We will copy the original file from IAR to
TrueSTUDIO® since we need to make sure we use the
same peripheral configuration for both projects, but
we might also want to change this configuration in
the future

stm32f1xx_it.c

stm32f1xx_it.h

/ƻƴǘŀƛƴǎ ǘƘŜ Ƴŀƛƴ L{wΩǎ ŀƴŘ
the original IAR project has
added a ISR handler for
TIM1_UP_IRQHandler

We will keep the version provided by TrueSTUDIO®
and just add TIM1_UP_IRQHandler and make sure it
behaves the same as for the original project

system_stm32f10x.c This is the access layer to the
device drivers

We should use the same version as we use for our
STM32F10x peripheral library so we will link to the
file that is in the original IAR project

tiny_printf.c ¢Ƙƛǎ ƛǎ ŀ άǎƳŀƭƭέ ǾŜǊǎƛƻƴ ƻŦ
printf, more suitable for small
embedded applications

We will just keep ǘƘƛǎ ǎƛƴŎŜ ǿŜ ǊŜŀƭƭȅ ŘƻƴΩǘ ǳǎŜ ŀƴȅ
printf or similar calls in our application

Table 2 - Files to keep, copy or link to

Starting the Migration

34 | P a g e

Before we start adding files from the original project and our new TrueSTUDIO® project we

need to remove some source files from TrueSTUDIO® that would otherwise conflict with

ǘƘŜ ƴŜǿ ŦƛƭŜǎΦ Lƴ ƻǳǊ ŜȄŀƳǇƭŜ ǘƘŀǘ ǿƻǳƭŘ ōŜ ǘƘŜ ŦƛƭŜǎ άƳŀƛƴΦŎέΣ ά{¢aонCмлȄψŎƻƴŦΦƘέ ŀƴŘ

άǎȅǎǘŜƳψǎǘƳонŦмлȄΦŎέ ŀǎ ǿŜƭƭ ŀǎ ǘƘŜ ǘǿƻ ƭƛōǊŀǊȅ ŦƻƭŘŜǊǎ ά/a{L{έ ŀƴŘ

ά{¢aонCмлȄψ{ǘŘtŜǊƛǇƘψ5ǊƛǾŜǊέΦ

To remove these files, in TrueSTUDIO® Project Explorer you right-click the file or folder to

remove and select Delete.

Figure 13 - Deleting project files

Do the same for files STM32F10x_conf.h, system_stm32f10x.c and folders CMSIS and

STM32F10x_StdPeriph_Driver. Your Project Explorer should look something like this now.

Starting the Migration

35 | P a g e

Figure 14 - Project Explorer view

Now we are ready to Import new source files, either by copying or by creating links to the

original source file or folder.

COPY FILES TO NEW PROJECT LOCATION

1. In TrueSTUDIO® Project Explorer, right-ŎƭƛŎƪ ƻƴ ǘƘŜ ǎǊŎ ŦƻƭŘŜǊ ŀƴŘ ǎŜƭŜŎǘ LƳǇƻǊǘΧ

Figure 15 - Adding files, step 1

2. In the Import Dialog, select General and Filesystem and click Next.

Figure 16 - Adding files, step 2

LŦ ȅƻǳ ŘƻƴΩǘ ƪƴƻǿ ǿƘŜǊŜ ŀ ŦƛƭŜ ƛǎ ǇƘȅǎƛŎŀƭƭȅ ƭƻŎŀǘŜŘ ƛƴ ȅƻǳǊ L!w ǇǊƻƧŜŎǘ, you can
find the location if you in the EWARM IDE right-click on that file and select File
Properties. The Location entry will have a path to the physical location of that
file.

Starting the Migration

36 | P a g e

3. At last page of the import wizard, we Browse to the location of the original main.c and

select main.c as well as stm32f10x_conf.h since they both are at the same location.

When done we click Finish to have these two files copied to our new TrueSTUDIO®

project location.

Figure 17 - Adding files, step 3

Starting the Migration

37 | P a g e

USING FILES IN AN EXTERNAL LOCATION
For the rest of the files we need we will, instead of copying files to our project, create a

links to the source files. We have one file and two folders to link to and we start by

creating a link to the file system_stm32f10x.c.

1. Just as we did in step 1 when copying files, we right-click on the src folder in our

tǊƻƧŜŎǘ 9ȄǇƭƻǊŜǊ ŀƴŘ ǎŜƭŜŎǘ LƳǇƻǊǘΧ

2. Step 2 is also the same as when copying files, so select General and File System,

and click Next.

3. Now we click the Advanced butǘƻƴ ŀƴŘ ŎƘŜŎƪ ǘƘŜ ōƻȄ ά/ǊŜŀǘŜ ƭƛƴƪǎ ƛƴ ǿƻǊƪǎǇŀŎŜέΦ

Then we Browse to the location of system_stm32f10x.c and after that we can

select the same file in the Import dialog. When done click Finish.

Figure 18 - Linking to files

Starting the Migration

38 | P a g e

USING DIRECTORIES IN AN EXTERNAL LOCATION
Now we will link to the folder STM32F10x_StdPeriph_Driver and with that have access to

all the source files in our TrueSTUDIO® project. (Remember we did not need the CMSIS

folder for source code.)

1. Right-click on the Libraries folder and select Import. We selected Libraries instead of

src just to keep a nice and consistent structure for our project.

Figure 19 - Linking to directories, step 1

2. Next we select General and File System and click Next.

Figure 20 - Linking to directories, step 2

Starting the Migration

39 | P a g e

3. bƻǿ ǿŜ ǎŜƭŜŎǘ !ŘǾŀƴŎŜŘ ŀƴŘ ŎƘŜŎƪ ǘƘŜ ά/ǊŜŀǘŜ ƭƛƴƪǎ ƛƴ ǿƻǊƪǎǇŀŎŜέ ƻǇǘƛƻƴΦ ¢ƘŜƴ ǿŜ

Browse to the location of the original STM32F10x_StdPeriph_Driver. Once there we

expand the content of that folder to the left in the Import dialog and check the src

ōƻȄΦ ό²Ŝ ŎƻǳƭŘ ŀƭǎƻ ǎŜƭŜŎǘ ƛƴŎ ǘƻ ŀŘŘ ǘƘŜ ƛƴŎƭǳŘŜ ŦƻƭŘŜǊ ōǳǘ ǿŜ ŘƻƴΩǘ ƘŀǾŜ ǘƻΦύ Click

Finish when done.

Figure 21 - Linking to directories, step 3

Starting the Migration

40 | P a g e

Now we have all our source files in TrueSTUDIO® and your Project Explorer should look

something like this.

Figure 22 - Project Explorer, final

Next chapter is only for users who uses the IAR Eclipse plugin to import files and if you are
noǘ ŘƻƛƴƎ ǘƘƛǎΣ ǘƘŜƴ ƳƻǾŜ ƻƴ ŘƛǊŜŎǘƭȅ ǘƻ ǎŜŎǘƛƻƴ άTHE PREPROCESSOR INCLUDE
DIRECTORIESέΦ

Starting the Migration

41 | P a g e

USING IAR ECLIPSE PLUGIN
Before we can start using the IAR Eclipse plugin we have to install it in Atollic
TrueSTUDIO®. The link below describes how this is done.
http://eclipse-update.iar.com/plugin-manager-install.html

Once we have this plugin installed in Atollic TrueSTUDIO® we can import the original
EWARM project as described below. The basic idea when migrating IAR projects to
TrueSTUDIO® using the Eclipse plugin is this. We import the original EWARM project into
the same Workspace as our new TrueSTUDIO® project using links to the files in that
project. When this is done we can simply drag-and-drop folders and files that we link to
link to from the original EWARM project to our new TrueSTUDIO® project. For files in the
original EWARM project that we need to physically have in the new TrueSTUDIO® project
we will import them into the appropriate source folder.

1. First we import the original EWARM project into Atollic TrueSTUDIO®.

Figure 23 - Import EWARM Eclipse project, step 1

http://eclipse-update.iar.com/plugin-manager-install.html

Starting the Migration

42 | P a g e

2. bŜȄǘ ǿŜ ǎŜƭŜŎǘ άLƳǇƻǊǘ L!w 9ƳōŜŘŘŜŘ ²ƻǊƪōŜƴŎƘ ǇǊƻƧŜŎǘέ ŀƴŘ ŎƭƛŎƪ bŜȄǘΦ

Figure 24 - Import EWARM Eclipse project, step 2

3. In the last step of this import wizard you browse to the original EWARM project file.
aŀƪŜ ǎǳǊŜ ǘƘŀǘ ǘƘŜ ƻǇǘƛƻƴ ά/ǊŜŀǘŜ ƭƛƴƪǎέ ŀǊŜ ŎƘŜŎƪŜŘ ōŜŦƻǊŜ ŎƭƛŎƪƛƴƎ CƛƴƛǎƘΦ

Figure 25 - Import EWARM Eclipse project, step 3

Starting the Migration

43 | P a g e

Now we have the original EWARM project we like to migrate from in the same
Workspace as the new TrueSTUDIO® project we are building up. Below is a short
description of what files to move to the new TrueSTUDIO® project using the IAR
Eclipse plugin. For details on why we are moving some files and not others you should
Ƨǳǎǘ ǊŜŀŘ ǘƘǊƻǳƎƘ ǎŜŎǘƛƻƴ άImporting Source Filesέ ŀōƻǾŜΦ

1. We start by deleting the folders and files in our new TrueSTUDIO® project that we
later will get from the original EWARM project. The files to delete are main.c,
stm32f10x_conf.h, system_stm32f10x.c and we will also delete the folder
STM32F10x_StdPeriph_Driver.

Figure 26 ς Delete multiple folders and files

Starting the Migration

44 | P a g e

2. Now we need to make sure we use the STM32F1 peripheral library that were
used in the original EWARM project. We can easily do this by dragging the folder
StdPeriph_Driver from GettingStarted to myProject. Note that we are actually not
moving any files around with this since the content in that folder links and not
physical files.

Figure 27 ς Drag-and-drop folders in TrueSTUDIO®

Starting the Migration

45 | P a g e

3. Next we need to get the physical file stm32f10x_conf.h and main.c from the
original project into the new TrueSTUDIO® project. We can do this by right-
clicking on the src folder in myProject and selecting Import.

Figure 28 ς Importing files to a project, step 1

4. Next we select File System and click Next.

Figure 29 ς Importing files to a project, step 2

Starting the Migration

46 | P a g e

5. In the last step we browse to the location of the original EWARM project and
ǎŜƭŜŎǘ ǘƘŜ ǘǿƻ ŦƛƭŜǎ ƳŀƛƴΦŎ ŀƴŘ ǎǘƳонŦмлȄψŎƻƴŦΦƘΦ aŀƪŜ ǎǳǊŜ ǘƘŀǘ ǘƘŜ άLƴǘƻ
foldeǊέ ŜŘƛǘ ōƻȄ ǎŀȅǎ άƳȅtǊƻƧŜŎǘκǎǊŎέΦ

Figure 30 ς Importing files to a project, step 3

Starting the Migration

47 | P a g e

6. We also need to link to system_stm32f10x.c in the original project and we can do
this by importing a link to that file. It is the same procedure as when we added
main.c and stm32f10x_conf.h above, except for one thing. In the final step we
ŎƭƛŎƪ ǘƘŜ ά!ŘǾŀƴŎŜŘҔҔέ ōǳǘǘƻƴ ŀƴŘ ƳŀƪƛƴƎ ǎǳǊŜ ǘƘŀǘ ǘƘŜ ά/ǊŜŀǘŜ ƭƛƴƪǎ ƛƴ
ǿƻǊƪǎǇŀŎŜέ ƛǎ ŎƘŜŎƪŜŘ ōŜŦƻǊŜ ŎƭƛŎƪƛƴƎ CƛƴƛǎƘΦ

Figure 31 ς Importing files to a project, step 4

Now we are done with the step to removing and adding files and folders to our
new Atollic TrueSTUDIO® project and are ready to continue to the next section.

Starting the Migration

48 | P a g e

THE PREPROCESSOR INCLUDE DIRECTORIES

Before we modify the source code and do any build we need to make sure that the

preprocessor will be able to find the correct include files. The safest and fastest way to do

this would be to have a look at the compiler include directories for the original IAR project.

When we do we will find that the following include paths were set up for that project.

$PROJ_DIR$\

$PROJ_DIR$\ board \

$PROJ_DIR$\ .. \ library \ CMSIS\ CM3\ DeviceSupport \ ST\ STM32F10x

$PROJ_DIR$\ .. \ library \ STM32F10x_StdPeriph_Driver \ inc \

¢ƘŜ ά$PROJ_DIR$\ έ ŎƻǊǊŜǎǇƻƴŘ ǘƻ ǘƘŜ ƻǳǊ άΦΦκǎǊŎέ ƛƴŎƭǳŘŜ ǇŀǘƘ ǎƻ ǿŜ ƘŀǾŜ ǘƘŀǘ

covered. The ñ$PROJ_DIR$\ board \ έ ƛǎ ŀ ƳƛǎǘŀƪŜ ōȅ L!w ǎƛƴŎŜ ǘƘŜǊŜ ŀǊŜ ƴƻ άōƻŀǊŘέ

folder in the IAR project directory. We can safely ignore that path. The last two paths we

ǿƛƭƭ ƴŜŜŘ ǘƻ άǘǊŀƴǎƭŀǘŜέ ƛƴǘƻ ǎƻƳŜǘƘƛƴƎ useful for new TrueSTUDIO® project.

There is also an extra include path used in IAR if the EWRM IDE option General options ->

Library configuration -> Use CMSIS is checked. In that case the IAR will also include

άғ9²!wa-Installation-path>\CMSIS\LƴŎƭǳŘŜέ Ŧƻr the preprocessor search paths. Our

original IAR project do have the Use CMSIS checked so we need to add that path to our

TrueSTUDIO® project.

Going back to TrueSTUDIO® and looking C Compiler Directories Include paths we see that

our project corresponds almost 100% with what we have in the original IAR project.

Figure 32 - C/C++ Include Path setting (start)

